Investigation and Minimisation of Gas Odour in Reticulation Sewer Networks

Engineering, IT, Mathematics and Statistics

ELIGIBILITY

  • This internship is able to cover project costs for domestic students only.
  • Applications for this opportunity are ongoing until Candidate successful.

Project Background

Australia’s Leading Sewer Vent Shaft Design, Fabrication & Installation Company, SVSR, is seeking a highly motivated engineering candidate with excellent communication skills to help better understand and manage odour emission from sewer vent shafts. Ideally suited to Chemical, Civil or Environmental Engineering.

Research to be Conducted

H2S (hydrogen sulfide) and water vapour are the principal components of wastewater gas. However, H2S is only one of many odour components in typical sewer gases. Wastewater gas is responsible for odour complaints and corrosion, which cause billions of dollars of asset damage each year worldwide.

Reticulated sewer environments are very complex and variable. No consensus currently exists as to what constitutes a representative reticulated sewer environment and how variations such as liquid flow rates, pipe diameter, pipe gradient and other variables effect H2S gas flow rates.

This project will establish the standard conditions which may be found in reticulated sewer environments and how such on-site variables effect H2S and other gas flow rates. This is an important focus for SVSR, as they seek to understand current efficacy for gas-phase (i.e. “odour”) sulfide control; and future environmental sustainability. Initial experiments conducted at SVSR explored a filter media which adsorbs hydrogen sulphide (H2S). On-site trials are necessary, but the site environment is difficult to characterise.

This project will provide evidence to inform SVSR on strategic actions and future research.

The key research questions of this research project are:

  • Are there conditions which constitute a representative environment for reticulated sewer networks and how do variations change gas flow rates?
  • Is there a site with predictable representative conditions, suitable for field trials?
  • Are there alternative approaches to passive ventilation for reducing H2S in reticulated sewer networks, while still maintaining adequate gas flow rates from sewer to atmosphere?
  • Since H2S tends to be created in sewers in anaerobic conditions, particularly at night when sewer liquid flows are reduced, the H2S levels may be reduced by increasing airflow in the system. How to achieve this in practice with the site conditions, e.g. electric fans can ignite the explosive gases.

Skills Wish List

If you’re a PhD student and meet some or all the below we want to hear from you. We strongly encourage women, indigenous and disadvantaged candidates to apply:

ESSENTIAL

  • Undergraduate degree (or equivalent) in either:
    • Science with a major in Physics, Chemistry, Microbiology, Mathematics or similar
    • Engineering with a focus on Chemical, Civil and/or Environmental Engineering
  • A strong interest in finding practical, real-world solutions in the field of wastewater processing

DESIRABLE

  • Previous experience and/or knowledge of:
    • Computational Fluid Dynamics (CFD)
    • Gas-phase thermodynamics
    • Membranes and materials science
    • Water and wastewater treatment
    • Sustainability and Life Cycle Assessments (LCA’s),
    • Statistics and modelling
  • Valid driver’s license preferred- as the project involves research experiments in field location, where public transport is not accessible.

Research Outcomes

  • A literature review on the state of knowledge of ventilation in reticulated sewer networks
  • Support the analysis of emerging data on variations in such networks and their impact on gas flow rates
  • Development of a report and journal paper
  • Support the development of an options paper for future research & development

Additional Details

The intern will receive $3,000 per month of the internship, usually in the form of stipend payments.

It is expected that the intern will primarily undertake this research project during regular business hours and maintain contact with their academic mentor throughout the internship either through face-to-face or phone meetings as appropriate.

The intern and their academic mentor will have the opportunity to negotiate the project’s scope, milestones and timeline during the project planning stage.

LOCATION:
Liverpool, NSW
DURATION:
5 months
ELIGIBILITY:
Domestic students only
REF NO:
APR – 1285

INTERNSHIP CONTACT

CONNECT WITH APR.INTERN

Suggested Internships

FUSETEC (APR – 1478)

Location:
Adelaide, SA
Cutting Edge Medical Devices

DON ALAN (APR – 1479)

Location:
Adelaide, SA or can be completed remotely
Modelling Power Losses in Inductors and Transformers used in Switch Mode Transformers

ERATOS GROUP (APR – 1466)

Location:
Melbourne, VIC or can be completed remotely
Metadata Extraction on the Edge